Osculating varieties and their joins: $\mathbb{P}^1\times \mathbb{P}^1$

نویسندگان

چکیده

Let $X\subset \PP^r$ be an integral projective variety. We study the dimensions of joins several copies osculating varieties $J(X,m)$ $X$. Our methods are general, but we give a full description in all cases only if $X$ is linearly normal embedding $\PP^1\times \PP^1$. For these embeddings \PP^1$ examples and then one copy arbitrary number

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osculating spaces to secant varieties

We generalize the classical Terracini’s Lemma to higher order osculating spaces to secant varieties. As an application, we address with the so-called Horace method the case of the d-Veronese embedding of the projective 3-space. A.M.S. Math. Subject Classification (2000): 14N05.

متن کامل

Osculating Spaces of Varieties and Linear Network Codes

We present a general theory to obtain good linear network codes utilizing the osculating nature of algebraic varieties. In particular, we obtain from the osculating spaces of Veronese varieties explicit families of equidimensional vector spaces, in which any pair of distinct vector spaces intersect in the same dimension. Linear network coding transmits information in terms of a basis of a vecto...

متن کامل

Joins of Projective Varieties and Multisecant Spaces

Let X1, . . . ,Xs ⊂ PN , s ≥ 1, be integral varieties. For any integers ki > 0, 1 ≤ i ≤ s, and t ≥ 0 set ~k := (k1, . . . , ks) and ~ X := (X1, . . . ,Xs). Let Sec( ~ X; t,~k) be the set of all linear t-spaces contained in a linear (k1 + · · · + ks − 1)-space spanned by k1 points of X1, k2 points of X2, . . . , ks points of Xs. Here we study some cases where Sec( ~ X ; t,~k) has the expected di...

متن کامل

Varieties of Algebras and their Congruence Varieties

1. Congruence lattices. G. Birkhoff and O. Frink noted that the congruence lattice Con04) of an algebra A (with operations of finite rank) is algebraic or compactly generated. The celebrated Grätzer-Schmidt theorem states that, conversely, every algebraic lattice is isomorphic to Con(A) for some algebra A. The importance of this is obvious, for it shows that unless something more is known about...

متن کامل

Rotation-minimizing osculating frames

An orthonormal frame (f1, f2, f3) is rotation–minimizing with respect to fi if its angular velocity ω satisfies ω · fi ≡ 0 — or, equivalently, the derivatives of fj and fk are both parallel to fi. The Frenet frame (t,p,b) along a space curve is rotation–minimizing with respect to the principal normal p, and in recent years adapted frames that are rotation–minimizing with respect to the tangent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cubo

سال: 2023

ISSN: ['0716-7776', '0719-0646']

DOI: https://doi.org/10.56754/0719-0646.2502.331